ar X iv : 0 71 1 . 09 04 v 1 [ m at h . A P ] 6 N ov 2 00 7 A continuous spectrum for nonhomogeneous differential operators in Orlicz - Sobolev spaces ∗
نویسنده
چکیده
We study the nonlinear eigenvalue problem−div(a(|∇u|)∇u) = λ|u|q(x)−2u in Ω, u = 0 on ∂Ω, where Ω is a bounded open set in R with smooth boundary, q is a continuous function, and a is a nonhomogeneous potential. We establish sufficient conditions on a and q such that the above nonhomogeneous quasilinear problem has continuous families of eigenvalues. The proofs rely on elementary variational arguments. The abstract results of this paper are illustrated by the cases a(t) = t log(1 + t) and a(t) = t[log(1 + t)]. 2000 Mathematics Subject Classification: 35D05, 35J60, 35J70, 58E05, 68T40, 76A02.
منابع مشابه
ar X iv : 0 90 4 . 09 09 v 1 [ m at h . FA ] 6 A pr 2 00 9 On Sobolev extension domains in R
We describe a class of Sobolev W k p -extension domains Ω ⊂ R n determined by a certain inner subhyperbolic metric in Ω. This enables us to characterize finitely connected Sobolev W 1 p -extension domains in R 2 for each p > 2 .
متن کاملar X iv : m at h / 04 11 35 1 v 2 [ m at h . A T ] 1 7 N ov 2 00 4 POINCARÉ SUBMERSIONS
We prove two kinds of fibering theorems for maps X → P , where X and P are Poincaré spaces. The special case of P = S yields a Poincaré duality analogue of the fibering theorem of Browder and Levine.
متن کاملar X iv : 0 71 1 . 32 62 v 1 [ m at h . A P ] 2 1 N ov 2 00 7 HARMONIC ANALYSIS RELATED TO SCHRÖDINGER OPERATORS
In this article we give an overview on some recent development of Littlewood-Paley theory for Schrödinger operators. We extend the LittlewoodPaley theory for special potentials considered in the authors’ previous work. We elaborate our approach by considering potential in C∞ 0 or Schwartz class in one dimension. In particular the low energy estimates are treated by establishing some new and ref...
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کامل